ABOUT JET A FUEL

Back ⟶

Jet fuel, aviation turbine fuel (ATF)

Jet fuel,  aviation turbine fuel (ATF), or avtur, is a type of aviation fuel designed for use in aircraft powered by gas-turbine engines. It is colorless to straw-colored in appearance. The most commonly used fuels for commercial aviation are Jet A and Jet A-1, which are produced to a standardized international specification. The only other jet fuel commonly used in civilian turbine-engine powered aviation is Jet B, which is used for its enhanced cold-weather performance.

Jet fuel is a mixture of a large number of different hydrocarbons. The range of their sizes (molecular weights or carbon numbers) is defined by the requirements for the product, such as the freezing or smoke point. Kerosene-type jet fuel (including Jet A and Jet A-1) has a carbon number distribution between about 8 and 16 (carbon atoms per molecule); wide-cut or naphtha-type jet fuel (including Jet B).

 

Jet B is a fuel in the naphtha-kerosene region that is used for its enhanced cold-weather performance. However, Jet B's lighter composition makes it more dangerous to handle. For this reason, it is rarely used, except in very cold climates. A blend of approximately 30% kerosene and 70% gasoline, it is known as wide-cut fuel. It has a very low freezing point of −60 °C (−76 °F), and a low flash point as well. It is primarily used in some military aircraft. It is also used in Northern Canada, Alaska, and sometimes Russia, because of its low freezing point.

Standards

Most jet fuels in use since the end of World War II are kerosene-based. Both British and American standards for jet fuels were first established at the end of World War II. British standards derived from standards for kerosene use for lamps—known as paraffin in the UK—whereas American standards derived from aviation gasoline practices. Over the subsequent years, details of specifications were adjusted, such as minimum freezing point, to balance performance requirements and availability of fuels. Very low temperature freezing points reduce the availability of fuel. Higher flash point products required for use on aircraft carriers are more expensive to produce. In the United States, ASTM International produces standards for civilian fuel types, and the U.S. Department of Defense produces standards for military use. The British Ministry of Defence establishes standards for both civil and military jet fuels. For reasons of inter-operational ability, British and United States military standards are harmonized to a degree. In Russia and former Soviet Union countries, grades of jet fuels are covered by the State Standard (GOST) number, or a Technical Condition number, with the principal grade available in Russia and members of the CIS being TS-1.

JET A

Jet A specification fuel has been used in the United States since the 1950s and is usually not available outside the United States and a few Canadian airports such as Toronto and Vancouver, whereas Jet A-1 is the standard specification fuel used in the rest of the world other than the former Soviet states where TS-1 is the most common standard. Both Jet A and Jet A-1 have a flash point higher than 38 °C (100 °F), with an autoignition temperature of 210 °C (410 °F).

Differences between Jet A and Jet A-1

The primary difference is the lower freezing point of A-1:

Jet A's is −40 °C (−40 °F)
Jet A-1's is −47 °C (−53 °F)

The other difference is the mandatory addition of an anti-static additive to Jet A-1.

Jet A trucks, storage tanks, and plumbing that carry Jet A are marked with a black sticker with "Jet A" in white printed on it, adjacent to another black stripe.